日本在线www-日本在线播放一区-日本在线不卡免费视频一区-日本在线不卡视频-成人影院久久久久久影院-成人影院一区二区三区

ABB
關注中國自動化產業發展的先行者!
CAIAC 2025
2025工業安全大會
OICT公益講堂
當前位置:首頁 >> 資訊 >> 行業資訊

資訊頻道

Distributed model predictive control for plant-wide hot-rolled strip laminar cooling process
  • 點擊數:778     發布時間:2010-03-14 20:29:00
  • 分享到:
關鍵詞:

1. Introduction
       Recently, customers require increasingly better quality for hotrolled
strip products, such as automotive companies expect to gain
an advantage from thinner but still very strong types of steel sheeting
which makes their vehicles more efficient and more environmentally
compatible. In addition to the alloying elements, the
cooling section is crucial for the quality of products [1]. Hot-rolled
strip laminar cooling process (HSLC) is used to cool a strip from an
initial temperature of roughly 820–920 C down to a coiling temperature
of roughly 400–680 C, according to the steel grade and
geometry. The mechanical properties of the corresponding strip
are determined by the time–temperature-course (or cooling curve)
when strip is cooled down on the run-out table [1,2]. The precise
and highly flexible control of the cooling curve in the cooling section
is therefore extremely important.

       Most of the control methods (e.g. Smith predictor control [3],
element tracking control [4], self-learning strategy [6] and adaptive
control [5]) pursue the precision of coiling temperature and
care less about the evolution of strip temperature. In these methods,
the control problem is simplified so greatly that only the coiling
temperature is controlled by the closed-loop part of the
controller. However, it is necessary to regulate the whole evolution
procedure of strip temperature if better properties of strip are
required. This is a nonlinear, large-scale, MIMO, parameter
distributed complicated system. Therefore, the problem is how to
control the whole HSLC process online precisely with the size of
HSLC process and the computational efforts required.

       Model predictive control (MPC) is widely recognized as a practical
control technology with high performance, where a control
action sequence is obtained by solving, at each sampling instant,
a finite horizon open-loop receding optimization problem and
the first control action is applied to the process [7]. An attractive
attribute of MPC technology is its ability to systematically account
for process constraints. It has been successfully applied to many
various linear [7–12], nonlinear [13–17] systems in the process
industries and is becoming more widespread [7,10]. For large-scale
and relatively fast systems, however, the on-line implementation
of centralized MPC is impractical due to its excessive on-line computation
demand. With the development of DCS, the field-bus
technology and the communication network, centralized MPC
has been gradually replaced by decentralized or distributed MPC
in large-scale systems [21,22] and [24]. DMPC accounts for the
interactions among subsystems. Each subsystem-based MPC in
DMPC, in addition to determining the optimal current response,
also generates a prediction of future subsystem behaviour. By suitably
leveraging this prediction of future subsystem behaviour, the
various subsystem-based MPCs can be integrated and therefore the
overall system performance is improved. Thus the DMPC is a good
method to control HSLC.

     Some DMPC formulations are available in the literatures
[18–25]. Among them, the methods described in [18,19] are
proposed for a set of decoupled subsystems, and the method
described in [18] is extended in [20] recently, which handles
systems with weakly interacting subsystem dynamics. For
large-scale linear time-invariant (LTI) systems, a DMPC scheme
is proposed in [21]. In the procedure of optimization of each
subsystem-based MPC in this method, the states of other subsystems
are approximated to the prediction of previous instant.
To enhance the efficiency of DMPC solution, Li et al. developed
an iterative algorithm for DMPC based on Nash optimality for
large-scale LTI processes in [22]. The whole system will arrive
at Nash equilibrium if the convergent condition of the algorithm
is satisfied. Also, in [23], a DMPC method with guaranteed feasibility
properties is presented. This method allows the practitioner
to terminate the distributed MPC algorithm at the end
of the sampling interval, even if convergence is not attained.
However, as pointed out by the authors of [22–25], the performance
of the DMPC framework is, in most cases, different from
that of centralized MPC. In order to guarantee performance
improvement and the appropriate communication burden
among subsystems, an extended scheme based on a so called
‘‘neighbourhood optimization” is proposed in [24], in which
the optimization objective of each subsystem-based MPC considers
not only the performance of the local subsystem, but also
those of its neighbours. The HSLC process is a nonlinear,
large-scale system and each subsystem is coupled with its
neighbours by states, so it is necessary to design a new DMPC
framework to optimize HSLC process. This DMPC framework
should be suitable for nonlinear system with fast computational
speed, appropriate communication burden and good global
performance.
In this work, each local MPC of the DMPC framework proposed
is formulated based on successive on-line linearization of nonlinear
model to overcome the computational obstacle caused by nonlinear
model. The prediction model of each MPC is linearized
around the current operating point at each time instant. Neighbourhood
optimization is adopted in each local MPC to improve
the global performance of HSLC and lessen the communication
burden. Furthermore, since the strip temperature can only be measured
at a few positions due to the hard ambient conditions, EKF is
employed to estimate the transient temperature of strip in the
water cooling section.
The contents are organized as follows. Section 2 describes the
HSLC process and the control problem. Section 3 presents proposed
control strategy of HSLC, which includes the modelling of subsystems,
the designing of EKF, the functions of predictor and the
development of local MPCs based on neighbourhood optimization
for subsystems, as well as the iterative algorithm for solving the
proposed DMPC. Both simulation and experiment results are presented
in Section 4. Finally, a brief conclusion is drawn to summarize
the study and potential expansions are explained.
2. Laminar cooling of hot-rolled strip
2.1. Description
The HSLC process is illustrated in Fig. 1. Strips enter cooling section
at finishing rolling temperature (FT) of 820–920 C, and are
coiled by coiler at coiling temperature (CT) of 400–680 C after
being cooled in the water cooling section. The X-ray gauge is used
to measure the gauge of strip. Speed tachometers for measuring
coiling speed is mounted on the motors of the rollers and the
mandrel of the coiler. Two pyrometers are located at the exit of
finishing mill and before the pinch rol1 respectively. Strips are
6.30–13.20 mm in thickness and 200–1100 m in length. The
run-out table has 90 top headers and 90 bottom headers. The top
headers are of U-type for laminar cooling and the bottom headers
are of straight type for low pressure spray. These headers are divided
into 12 groups. The first nine groups are for the main cooling
section and the 1ast three groups are for the fine cooling section. In
this HSLC, the number of cooling water header groups and the
water flux of each header group are taken as control variables to
adjust the temperature distribution of the strip.
2.2. Thermodynamic model
Consider the whole HSLC process from the point of view of geometrically
distributed setting system (The limits of which are represented
by the geometrical locations of FT and CT, as well as the
strip top and bottom sides), a two dimensional mathematical model
for Cartesian coordinates is developed combining academic and
industrial research findings [26]. The model assumes that there is
no direction dependency for the heat conductivity k. There is no
heat transfer in traverse and rolling direction. The latent heat is
considered by using temperature-dependent thermal property
developed in [27] and the model is expressed as
_x ¼
k
qcp
@2x
@z2 _l 
@x
@l ð1Þ
with the boundary conditions on its top and bottom surfaces
k
@x
@z ¼ h  ðx  x1Þ ð2Þ
where the right hand side of (2) is h times (x  x1) and
h ¼ hw
x  xw
x  x1
þ r0e
x4  x4
1
x  x1
ð3Þ
and x(z, l, t) strip temperature at position (z, l);
l, z length coordinate and thickness coordinate respectively;
q density of strip steel;
cp specific heat capacity;
k heat conductivity;
r0 Stefan–Boltzmann constant (5:67  108 w=m2 K4);
Water cooling section
Finishing mill
Pyrometer
Fine cooling section
7.5m 62.41m 7.5m
5.2 m
Pinch roll
Coiler
Main cooling section
X-ray
Fig. 1. Hot-rolled strip laminar cooling process.

熱點新聞

推薦產品

x
  • 在線反饋
1.我有以下需求:



2.詳細的需求:
姓名:
單位:
電話:
郵件:
主站蜘蛛池模板: 国产成人无码影视-国产成人无码专区-国产成人无码综合-国产成人无码综合亚洲日韩-国产成人无码综合亚洲日韩榴莲-国产成人无套精品在线观看 | 欧美视频综合-欧美视频中文字幕-欧美视频在线观在线看-欧美视频在线观看网站-直接观看黄网站免费视频-正在播放久久 | 韩国三级一区-韩国三级香港三级日本三级la-韩国三级香港三级日本三级-韩国三级视频网站-日韩欧美一及在线播放-日韩欧美一二三区 久久久久久久久国产-久久久久久久久97-久久久久久久国产视频-久久久久久久国产精品影院-午夜精-午夜寂寞院 | 日韩中文字幕视频在线观看-日韩中文字幕视频在线-日韩中文字幕视频-日韩中文字幕久久久经典网-亚洲不卡高清免v无码屋-亚洲成_人网站图片 | 在线播放波多野结衣-在线播放91撕破艺校舞蹈系-在线播放69热精品视频-在线www天堂资源网-欧美裸色美妆大全-欧美伦理三级 | 婷婷五色,五月天激情婷婷大综合,亚洲综合久久久久久中文字幕,国产ww久久久久久久久久,婷婷综合缴情亚洲五月伊,欧美日韩不卡在线 九九香蕉-九九线精品视频-九九五月天-九九天天影视-天天干b-天天干2018 | 香蕉网站男人网站-香蕉网站狼人久久五月亭亭-香蕉网在线视频-香蕉网在线观看-香蕉网伊-香蕉婷婷 中文有码中文字幕免费视频-中文有码视频-中文伊人-中文一区在线观看-欧美性综合-欧美性在线视频 | 五月婷婷激情在线,国产一及毛片,青青热久久国产久精品,激情网站免费,欧美精品三区,97国产影院 | 国产三级在线观看视小说-国产三级在线观看视频不卡-国产三级在线观看视频-国产三级在线观看免费-西瓜视频网页版-西瓜视频全部免费观看大全 | 亚洲国产欧美精品-亚洲国产欧美国产综合一区-亚洲国产欧美国产第一区-亚洲国产模特在线播放-好吊色青青青国产在线播放-好吊色青青草 | a级在线免费-a级在线看-a级在线观看免费-a级在线观看-日韩avdvd-日韩aa在线观看 | 五月婷六月婷婷,97九色,成年人国产,精品久久久久久久,久久久久久久国产精品电影,国产在线观看青草视频 | 久久道-久久大香伊蕉在人线国产昨爱-久久大香香蕉国产免费网站-久久大-天天做天天爽天天谢-天天做天天射 | 美日韩在线观看-美日韩在线-美女网站色在线观看-美女网站色免费-亚洲综合偷自成人网第页-亚洲综合天堂网 | 欧美日韩一区二区三区在线观看-欧美日韩一区二区三区在线播放-欧美日韩一区二区三区在线-欧美日韩一区二区三区四区-欧美日韩一区二区三区视视频-欧美日韩一区二区三区视频播 | 人人狠狠综合久久亚洲,超大乳首授乳一区二区,五月天视频网,久久综合成人网,久草视频免费播放,漂亮的保姆4-bd国语在线观看 | 91精品国产色综合久久不卡蜜,999国内精品永久免费视频试看,五月婷婷六月香,欧美成人综合在线,日韩亚洲第一页,国产欧美日韩不卡在线播放在线 | 亚洲乱伦熟女在线-亚洲精品国自产在线-亚州女人69内射少妇-亚州巨乳成人片-亚州激情视频-亚瑟在线中文影院 | 国产激情对白一区二区三区四-国产或人精品日本亚洲77美色-国产黄站-国产黄在线免费观看-日韩中文字幕网-日韩中文字幕视频在线观看 | 好男人天堂网,久久精品国产这里是免费,国产精品成人一区二区,男人天堂网2021,男人的天堂在线观看,丁香六月综合激情 | 国产福利在线视频尤物tv-国产福利在线看-国产福利在线高清导航大全-国产福利在线-国产福利影视-国产福利一区二区麻豆 | 国产精品v欧美精品v日本精品动漫-国产精品porn-国产精品jizzjizz-国产精品h片在线播放-热久久伊人-热久久亚洲 | 日皮影院,一区二区三区高清不卡,国产日韩欧美中文字幕,日韩亚洲欧美一区二区三区,国产三级91,国产精品hd免费观看 | 福利精品短视频在线-福利精品国产一区-福利视频网站一区二区三区-福利视频一二区-福利视频一区-福利视频一区二区 | 成人综合网久久-成人综合网亚洲伊人-成人综合网站-成人综合网站一区二区三区四区-成人综合网站在线-成人综合网址 | 欧美日韩一日韩一线不卡-欧美日韩一区在线观看-欧美日韩一区视频-欧美日韩一区二区综合在线视频-在线免费观看中文字幕-在线免费观看日本视频 | 国产福利在线视频尤物tv-国产福利在线看-国产福利在线高清导航大全-国产福利在线-国产福利影视-国产福利一区二区麻豆 | 色视频高清在线观看-色视频播放-色社区-色涩网站在线观看-色涩色-色色综合 | 午夜成人影视-午夜成人影片-午夜成人免费影院-午夜不卡影院-国产日本欧美亚洲精品视-国产日本欧美高清免费区 | jizzjizz在线-jizzxxxx18国产高清-jizzxxxx18中国-jizzxxxx18中国农村-欧美高清一区-欧美高清一区二区 | 国产美女小视频-国产美女网站视频-国产美女网站-国产美女特级嫩嫩嫩bbb-天天干视频在线观看-天天干视频在线 | japan hd xxxxx-ijzz日本-i91media果冻传媒-i91.media果冻传媒-h网址在线观看-h网址在线 | 尤物网站在线-尤物网站永久在线观看-尤物网在线观看-尤物天堂-久久久久久久亚洲精品一区-久久久久久久亚洲精品 | 欧美日韩亚洲一区二区三区在线观看-欧美日韩亚洲第一区在线-欧美日韩亚洲成人-欧美日韩午夜群交多人轮换-bbwvideos欧美老妇-bbwvideoa欧美老妇 | 北条麻妃在线观看,国产播放器一区,日本丶国产丶欧美色综合,亚洲一区二区三区高清,九九九国产,亚洲欧美久久精品一区 | 亚欧成人毛片一区二区三区四区-亚欧成人乱码一区二区-亚久久伊人精品青青草原2020-亚飞与亚基在线观看-国产综合成人观看在线-国产综合91天堂亚洲国产 | 久久99国产精品一区二区,欧美日韩另类在线,婷婷四月开心色房播播网,收集最新中文国产中文字幕,亚洲综合激情六月婷婷在线观看,欧美一级淫片 | 欧美日本一道免费一区三区-欧美日本一道高清二区三区-欧美日本一道道一区二区三-欧美日本亚洲国产一区二区-在线观看黄的网站-在线观看国内自拍 | 欧美日韩一区二区三区在线观看-欧美日韩一区二区三区在线播放-欧美日韩一区二区三区在线-欧美日韩一区二区三区四区-欧美日韩一区二区三区视视频-欧美日韩一区二区三区视频播 | 久久久精品国产sm最大网站-久久久精品国产免大香伊-久久久精品国产免费A片胖妇女-久久久精品久久久久久96-久久久精品久久久久久久久久久-久久久精品久久日韩一区综合 | 欧美黑寡妇香蕉视频-欧美国产一区视频在线观看-欧美国产一区二区三区-欧美国产一区二区-国产成人精品第一区二区-国产成人精品2021欧美日韩 |