日本在线www-日本在线播放一区-日本在线不卡免费视频一区-日本在线不卡视频-成人影院久久久久久影院-成人影院一区二区三区

ABB25年11月
關注中國自動化產業發展的先行者!
工業智能邊緣計算2025年會
2025工業安全大會
CAIAC 2025
OICT公益講堂
當前位置:首頁 >> 案例 >> 案例首頁

案例頻道

Distributed model predictive control for plant-wide hot-rolled strip laminar cooling process
  • 企業:控制網     領域:人機界面     行業:冶金    
  • 點擊數:2554     發布時間:2010-03-17 16:18:13
  • 分享到:
1. Introduction

     Recently, customers require increasingly better quality for hotrolled strip products, such as automotive companies expect to gain an advantage from thinner but still very strong types of steel sheeting which makes their vehicles more efficient and more environmentally compatible. In addition to the alloying elements, the cooling section is crucial for the quality of products [1]. Hot-rolled strip laminar cooling process (HSLC) is used to cool a strip from an initial temperature of roughly 820–920 C down to a coiling temperature of roughly 400–680 C, according to the steel grade and geometry. The mechanical properties of the corresponding strip are determined by the time–temperature-course (or cooling curve) when strip is cooled down on the run-out table [1,2]. The preciseand highly flexible control of the cooling curve in the cooling section is therefore extremely important.

        Most of the control methods (e.g. Smith predictor control [3],element tracking control [4], self-learning strategy [6] and adaptive control [5]) pursue the precision of coiling temperature and care less about the evolution of strip temperature. In these methods, the control problem is simplified so greatly that only the coiling temperature is controlled by the closed-loop part of the controller. However, it is necessary to regulate the whole evolution procedure of striptemperature if better properties of strip are required. This is a nonlinear, large-scale, MIMO, parameter distributed complicated system. Therefore, the problem is how to control the whole HSLC process online precisely with the size of
HSLC process and the computational efforts required.

         Model predictive control (MPC) is widely recognized as a practical control technology with high performance, where a control action sequence is obtained by solving, at each sampling instant, a finite horizon open-loop receding optimization problem and the first control action is applied to the process [7]. An attractive attribute of MPC technology is its ability to systematically account for process constraints. It has been successfully applied to many various linear [7–12], nonlinear [13–17] systems in the process industries and is becoming more widespread [7,10]. For large-scale and relatively fast systems, however, the on-line implementation of centralized MPC is impractical due to its excessive on-line computation demand. With the development of DCS, the field-bus technology and the communication network, centralized MPC has been gradually replaced by decentralized or distributed MPC in large-scale systems [21,22] and [24]. DMPC accounts for the interactions among subsystems. Each subsystem-based MPC in DMPC, in addition to determining the optimal current response, also generates a prediction of future subsystem behaviour. By suitably leveraging this prediction of future subsystem behaviour, the various subsystem-based MPCs can be integrated and therefore the overall system performance is improved. Thus the DMPC is a good method to control HSLC. 

        Some DMPC formulations are available in the literatures [18–25]. Among them, the methods described in [18,19] are proposed for a set of decoupled subsystems, and the methoddescribed in [18] is extended in [20] recently, which handles systems with weakly interacting subsystem dynamics. For arge-scale linear time-invariant (LTI) systems, a DMPC scheme is proposed in [21]. In the procedure of optimization of each subsystem-based MPC in this method, the states of other subsystems are approximated to the prediction of previous instant. To enhance the efficiency of DMPC solution, Li et al. developed an iterative algorithm for DMPC based on Nash optimality for large-scale LTI processes in [22]. The whole system will arrive at Nash equilibrium if the convergent condition of the algorithm is satisfied. Also, in [23], a DMPC method with guaranteed feasibility properties is presented. This method allows the practitioner to terminate the distributed MPC algorithm at the end of the sampling interval, even if convergence is not attained. However, as pointed out by the authors of [22–25], the performance of the DMPC framework is, in most cases, different from that of centralized MPC. In order to guarantee performance improvement and the appropriate communication burden among subsystems, an extended scheme based on a so called ‘‘neighbourhood optimization” is proposed in [24], in which the optimization objective of each subsystem-based MPC considers not only the performance of the local subsystem, but also those of its neighbours.

-------------Details please click to download http://www.dlhxzk.com.cn/images/zhengyi.rar---------------

熱點新聞

推薦產品

x
  • 在線反饋
1.我有以下需求:



2.詳細的需求:
姓名:
單位:
電話:
郵件:
亚洲天堂在线播放| 成人在激情在线视频| 成人高清视频免费观看| a级毛片免费观看网站| 久久99中文字幕久久| 可以在线看黄的网站| 日韩av东京社区男人的天堂| 日韩综合| 久久国产影院| 亚欧视频在线| 99久久精品国产麻豆| 国产国语在线播放视频| 亚洲精品久久玖玖玖玖| 九九久久国产精品大片| 国产伦精品一区二区三区无广告| 亚洲天堂在线播放| 国产麻豆精品视频| 国产麻豆精品高清在线播放| 日日夜夜婷婷| 日本在线不卡免费视频一区| 精品国产一区二区三区免费| 高清一级片| 天天色成人网| 日本免费看视频| 成人a级高清视频在线观看| 国产一区二区精品| 日本伦理片网站| 国产视频久久久久| 精品国产三级a| 成人a大片在线观看| 欧美爱爱动态| 一级毛片视频播放| 亚洲精品影院| 亚欧成人乱码一区二区| 美女免费精品高清毛片在线视| 999久久66久6只有精品| 999精品影视在线观看| 九九九在线视频| 国产麻豆精品视频| 久久精品店| 欧美激情一区二区三区在线| 精品国产三级a| 国产不卡在线观看| 亚欧视频在线| 国产国产人免费视频成69堂| 台湾美女古装一级毛片| 亚洲精品影院久久久久久| 成人免费网站久久久| 麻豆系列 在线视频| 国产欧美精品| 亚久久伊人精品青青草原2020| 成人免费一级毛片在线播放视频| 日韩中文字幕在线观看视频| 日韩中文字幕一区| 久久久久久久男人的天堂| 亚洲精品中文一区不卡| 在线观看成人网| 国产高清在线精品一区a| 国产不卡福利| 成人免费网站视频ww| 精品久久久久久免费影院| 国产不卡在线播放| 国产网站免费在线观看| 国产福利免费观看| 国产成a人片在线观看视频 | 97视频免费在线观看| 精品在线观看一区| 久久久成人网| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 日日爽天天| 一级毛片看真人在线视频| 黄色福利片| 久久99青青久久99久久| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 精品久久久久久中文字幕一区| 成人影院一区二区三区| 天天色成人| 免费国产在线观看不卡| 成人a大片高清在线观看| 国产网站免费视频| 精品国产一区二区三区久久久蜜臀| 色综合久久久久综合体桃花网| a级黄色毛片免费播放视频| 美女免费精品视频在线观看| 韩国毛片免费大片| 精品国产一区二区三区国产馆| 天天色色网| 日韩中文字幕在线观看视频| 国产麻豆精品高清在线播放| 国产91丝袜高跟系列| 国产国语在线播放视频| 天堂网中文在线| 麻豆午夜视频| 亚洲精品影院久久久久久| 日本伦理网站| 亚飞与亚基在线观看| 国产成人精品综合| 91麻豆精品国产自产在线 | 国产成a人片在线观看视频| 精品视频在线观看免费 | 欧美18性精品| 沈樵在线观看福利| 91麻豆精品国产高清在线| 人人干人人插| 欧美一级视频免费观看| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 精品毛片视频| 99久久精品国产国产毛片| 成人免费网站视频ww| 色综合久久天天综合绕观看| 久久国产精品自由自在| 日韩综合| 在线观看成人网| 999精品影视在线观看| 精品在线视频播放| 一级女性全黄生活片免费| 国产视频一区二区在线播放| 久草免费资源| 国产91丝袜在线播放0| 久久精品免视看国产明星 | 免费的黄色小视频| 精品视频在线观看免费| 久久99中文字幕久久| 久久99中文字幕| 国产视频一区二区三区四区| 91麻豆精品国产高清在线| 九九久久国产精品| 欧美另类videosbestsex久久| 99色吧| 精品毛片视频| 亚洲 欧美 成人日韩| 国产极品白嫩美女在线观看看| 91麻豆国产福利精品| 亚洲 欧美 成人日韩| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 日韩在线观看视频黄| 国产精品自拍一区| 精品视频在线观看免费 | 色综合久久天天综线观看| 欧美α片无限看在线观看免费| 欧美日本免费| 日韩女人做爰大片| 中文字幕一区二区三区 精品| 国产高清在线精品一区a| 亚久久伊人精品青青草原2020| 99热视热频这里只有精品| 欧美国产日韩在线| 亚洲 激情| 麻豆午夜视频| 久久精品成人一区二区三区| 久久精品免视看国产明星| 国产一区精品| 国产a毛片| 麻豆午夜视频| 日韩综合| 黄视频网站在线看| 国产一区二区精品| 九九久久国产精品大片| 你懂的日韩| 免费国产在线观看不卡| 国产成人精品综合久久久| a级毛片免费全部播放| 国产高清视频免费观看| 日本伦理片网站| 香蕉视频久久| 国产成人精品综合久久久| 天天做人人爱夜夜爽2020| 精品视频一区二区三区免费| 可以在线看黄的网站| 日本伦理黄色大片在线观看网站| 毛片高清| 香蕉视频久久| 欧美1区| 成人影院久久久久久影院| 天天做日日爱夜夜爽| 91麻豆精品国产片在线观看| 免费的黄色小视频| 精品久久久久久中文字幕一区| 日本伦理片网站| 天堂网中文在线| 午夜在线亚洲男人午在线| 四虎影视精品永久免费网站| 欧美a级成人淫片免费看| 国产a免费观看| 一级女性全黄生活片免费| 九九干| 亚久久伊人精品青青草原2020| 精品久久久久久综合网| 国产一区免费在线观看| 99久久精品国产麻豆| 四虎久久精品国产| 91麻豆国产| 999精品在线| 欧美大片aaaa一级毛片| 一级女性全黄生活片免费| 国产一区二区高清视频| 精品国产三级a| 色综合久久手机在线| 色综合久久天天综合绕观看| 可以免费看毛片的网站|