日本在线www-日本在线播放一区-日本在线不卡免费视频一区-日本在线不卡视频-成人影院久久久久久影院-成人影院一区二区三区

ABB
關注中國自動化產業(yè)發(fā)展的先行者!
CAIAC 2025
2025工業(yè)安全大會
OICT公益講堂
當前位置:首頁 >> 案例 >> 案例首頁

案例頻道

Distributed model predictive control for plant-wide hot-rolled strip laminar cooling process
  • 企業(yè):控制網     領域:人機界面     行業(yè):冶金    
  • 點擊數:2288     發(fā)布時間:2010-03-17 16:18:13
  • 分享到:
1. Introduction

     Recently, customers require increasingly better quality for hotrolled strip products, such as automotive companies expect to gain an advantage from thinner but still very strong types of steel sheeting which makes their vehicles more efficient and more environmentally compatible. In addition to the alloying elements, the cooling section is crucial for the quality of products [1]. Hot-rolled strip laminar cooling process (HSLC) is used to cool a strip from an initial temperature of roughly 820–920 C down to a coiling temperature of roughly 400–680 C, according to the steel grade and geometry. The mechanical properties of the corresponding strip are determined by the time–temperature-course (or cooling curve) when strip is cooled down on the run-out table [1,2]. The preciseand highly flexible control of the cooling curve in the cooling section is therefore extremely important.

        Most of the control methods (e.g. Smith predictor control [3],element tracking control [4], self-learning strategy [6] and adaptive control [5]) pursue the precision of coiling temperature and care less about the evolution of strip temperature. In these methods, the control problem is simplified so greatly that only the coiling temperature is controlled by the closed-loop part of the controller. However, it is necessary to regulate the whole evolution procedure of striptemperature if better properties of strip are required. This is a nonlinear, large-scale, MIMO, parameter distributed complicated system. Therefore, the problem is how to control the whole HSLC process online precisely with the size of
HSLC process and the computational efforts required.

         Model predictive control (MPC) is widely recognized as a practical control technology with high performance, where a control action sequence is obtained by solving, at each sampling instant, a finite horizon open-loop receding optimization problem and the first control action is applied to the process [7]. An attractive attribute of MPC technology is its ability to systematically account for process constraints. It has been successfully applied to many various linear [7–12], nonlinear [13–17] systems in the process industries and is becoming more widespread [7,10]. For large-scale and relatively fast systems, however, the on-line implementation of centralized MPC is impractical due to its excessive on-line computation demand. With the development of DCS, the field-bus technology and the communication network, centralized MPC has been gradually replaced by decentralized or distributed MPC in large-scale systems [21,22] and [24]. DMPC accounts for the interactions among subsystems. Each subsystem-based MPC in DMPC, in addition to determining the optimal current response, also generates a prediction of future subsystem behaviour. By suitably leveraging this prediction of future subsystem behaviour, the various subsystem-based MPCs can be integrated and therefore the overall system performance is improved. Thus the DMPC is a good method to control HSLC. 

        Some DMPC formulations are available in the literatures [18–25]. Among them, the methods described in [18,19] are proposed for a set of decoupled subsystems, and the methoddescribed in [18] is extended in [20] recently, which handles systems with weakly interacting subsystem dynamics. For arge-scale linear time-invariant (LTI) systems, a DMPC scheme is proposed in [21]. In the procedure of optimization of each subsystem-based MPC in this method, the states of other subsystems are approximated to the prediction of previous instant. To enhance the efficiency of DMPC solution, Li et al. developed an iterative algorithm for DMPC based on Nash optimality for large-scale LTI processes in [22]. The whole system will arrive at Nash equilibrium if the convergent condition of the algorithm is satisfied. Also, in [23], a DMPC method with guaranteed feasibility properties is presented. This method allows the practitioner to terminate the distributed MPC algorithm at the end of the sampling interval, even if convergence is not attained. However, as pointed out by the authors of [22–25], the performance of the DMPC framework is, in most cases, different from that of centralized MPC. In order to guarantee performance improvement and the appropriate communication burden among subsystems, an extended scheme based on a so called ‘‘neighbourhood optimization” is proposed in [24], in which the optimization objective of each subsystem-based MPC considers not only the performance of the local subsystem, but also those of its neighbours.

-------------Details please click to download http://www.dlhxzk.com.cn/images/zhengyi.rar---------------

熱點新聞

推薦產品

x
  • 在線反饋
1.我有以下需求:



2.詳細的需求:
姓名:
單位:
電話:
郵件:
主站蜘蛛池模板: 日韩伦理在线-日韩伦理片-日韩久久网-日韩精选-日韩精品综合-日韩精品资源 | 国产午夜视频在线,国产夜夜操,人人添人人澡人人澡人人人爽,欧美日韩国产综合视频在线看,精品久久一区二区,亚洲欧美一区二区三区久久 | 亚洲精品www久久久久久-亚洲精品m在线观看-亚洲精品99久久久久久-亚洲精品97福利在线-黑人解禁-黑人家教 | 波多野结衣中文字幕教师-波多野结衣中文字幕2022免费-波多野结衣中文在线观看-波多野结衣中文在线播放-波多野结衣中文一区-波多野结衣中文丝袜字幕 | 尤物网站在线-尤物网站永久在线观看-尤物网在线观看-尤物天堂-久久久久久久亚洲精品一区-久久久久久久亚洲精品 | 日本漫画母亲口工子全彩-日本漫画大全无翼乌-日本妈妈在线观看中文字幕-日本妈妈xxxx-操他射他影院-操老太太的逼 | 99欧美在线-99碰碰-99青草-99青草青草久热精品视频-99青青-99青青草 | 青草免费在线观看-青草免费在线-青草免费观看-青草久草视频-国产国语一级毛片-国产国语一级a毛片高清视频 | 伊人任线任你躁-伊人热人久久中文字幕-伊人热久久-伊人热-欧美极品欧美精品欧美视频-欧美极品第一页 | 欧美精品久久久亚洲,欧美国产第一页,亚欧成人一区二区,久久精品一区二区影院,国产成人精品综合久久久,亚洲国产精品一区 | 日本特黄一级-日本特黄特色aa大片免费-日本特黄特色aaa大片免费-日本特黄特黄aaaaa大片-二级特黄绝大片免费视频大片-二级片在线观看 | 五月天婷婷基地,久久精品1,中文字幕第一页亚洲,99精品国产高清一区二区三区香蕉,国产视频观看,日韩精品在线第一页 | 91久久福利国产成人精品-91久久国产-91久久国产成人免费观看资源-91久久国产精品-91久久国产精品视频-91久久国产口精品久久久久 国产偷抇久久精品A片蜜臀A-国产偷抇久久精品A片蜜臀AV-国产偷抇久久精品A片图片-国产偷窥熟妇高潮呻吟-国产凸凹视频熟女A片-国产玩弄放荡人妇系列 | 日韩在线观看网站-日韩在线观看视频网站-日韩在线观看视频免费-日韩在线观看视频黄-日韩在线观看免费完整版视频-日韩在线观看免费 | 激情 亚洲,欧美日韩一区二区在线观看视频,欧美亚洲第一页,国内精品福利在线视频,国产黄色小视频网站,日本欧美成人 | 亚欧成人毛片一区二区三区四区-亚欧成人乱码一区二区-亚久久伊人精品青青草原2020-亚飞与亚基在线观看-国产综合成人观看在线-国产综合91天堂亚洲国产 | 欧洲亚洲日本-欧洲亚洲视频-欧洲亚洲一区-欧洲亚洲一区二区三区-国产精品第九页-国产精品第六页 老司机午夜精品网站在线观看-老司机午夜精品视频在线观看免费-老司机午夜精品视频观看-老司机午夜精品视频播放-一本色道久久88一综合-一本色道久久88综合日韩精品 | 色多多污污在线播放免费-色多多污污下载-色多多污污版免费下载安装-色多多污网站在线观看-第一次破女初国产美女-第一次处破女完整版电影 | 欧美日韩国产在线成人网,成人免费一级片,在线观看国产一区,国产麻豆精品免费密入口,国产欧美日韩在线,在线视频观看国产 | 国产欧美精品一区二区三区四区-国产欧美精品一区二区三区-国产欧美精品一区二区-国产欧美精品系列在线播放-天天爽天天-天天视频一区二区三区 | 国产亚洲精品a在线观看app-国产亚洲精品A久久777777-国产亚洲精品AV片在线观看播放-国产亚洲精品AV麻豆狂野-亚洲 欧美 国产在线视频-亚洲 欧美 国产 综合五月天 日韩精品免费观看,亚洲精品国产综合一线久久,99精品国产高清一区二区三区香蕉,亚洲图区欧美,日韩电影免费在线观看中文字幕,999国产精品999久久久久久 | 在线亚洲激情,免费看电影网站,奇米影音先锋,99免费视频观看,国产成人aa视频在线观看,久久久蜜桃 欧美人成在线视频-欧美人成一本免费观看视频-欧美人xxxxxbbbb-欧美区在线-在线不卡免费视频-在线播放周妍希国产精品 | 91黄色影院-91黄色视屏-91黄色大片-91黄-91果冻制片厂广电传媒-91果冻传媒 | 莜田优在线观看-尤物最新网址-尤物综合-尤物自拍-久久久久久网址-久久久久久网站 | 国产免费看-国产免费久久精品久久久-国产免费久久精品99-国产免费久久精品44-天天干天天天天-天天干天天爽天天射 | 97视频久久久-97视频在线观看播放-97视频制服无码-97丨九色丨国产人妻熟女-97无码欧美熟妇人妻蜜-97无码欧美熟妇人妻蜜桃天美 | 玖玖射,国内高清久久久久久久久,久久婷婷丁香,91精品自在拍精选久久,不卡一区二区三区四区,奇迹少女第四季中文版免费全集 | 在线看国产,精品国产一区二区二三区在线观看,国产一区二区三区视频,美女一级毛片免费观看,日韩aa在线观看,成人精品一区二区www | 一级毛片在线看-一级毛片在线播放免费-一级毛片一级毛片免费毛片-一级毛片一级毛片-九九51精品国产免费看-九号影院 | 五月婷婷激情在线,国产一及毛片,青青热久久国产久精品,激情网站免费,欧美精品三区,97国产影院 | 五月天视频网站,国产成人精品日本亚洲语言,999福利视频,精品123区,国产中文视频,美女视频一区二区三区在线 | 国产一级特黄aa大片在线-国产一级特黄aa大片免费-国产一级视频在线观看-国产一级视频久久-午夜影院免费体验-午夜影院免费入口 | 成人av免费视频在线观看-成人av鲁丝片一区二区免费-成人av精品一区二区三区四区-成人aⅴ综合视频国产-成人aⅴ片-成年网站免费观看精品少妇人妻av一区二区三区 | 国产成人综合在线观看网站-国产成人综合在线-国产成人综合亚洲亚洲欧美-国产成人综合亚洲动漫在线-国产成人综合亚洲-国产成人综合网在线观看 | 欧美精欧美乱码一二三四区,怡红院五月天,国色天香社区在线看免费,水蜜桃视频在线高清观看,日韩欧美在线免费观看,水蜜桃在线视频 国产夜色福利院在线观看免费-国产夜趣福利免费视频-国产野花视频天堂视频免费-国产亚洲综合一区二区在线-日韩精品在线观看免费-日韩精品在线电影 | 日本欧美大码aⅴ在线播放-日本欧美不卡一区二区三区在线-日本女同在线观看-日本女同在线-国产日韩在线-国产日韩视频一区 | 日本免费在线观看视频-日本免费在线-日本免费一区二区在线观看-日本免费一区二区视频-2017国产小视频-2017能在线观看的网站 | 你懂的在线观看视频-你懂的日韩-你懂的国产精品-你懂的福利视频-夜夜操网-夜夜操天天爽 | 91麻豆精品国产一级-91啦国产-91蝌蚪在线视频-91蝌蚪在线播放-91蝌蚪网-91蝌蚪视频在线观看 | 91香蕉导航-91香蕉成人免费高清网站-91香蕉成人-91午夜视频-91午夜精品亚洲一区二区三区-91网址在线观看 | 青草国产-青草草在线视频-青草草在线观看免费视频-青草草在线-国产高清自偷自在线观看-国产高清自拍视频 |