日本在线www-日本在线播放一区-日本在线不卡免费视频一区-日本在线不卡视频-成人影院久久久久久影院-成人影院一区二区三区

ABB
關注中國自動化產業(yè)發(fā)展的先行者!
CAIAC 2025
2025工業(yè)安全大會
OICT公益講堂
當前位置:首頁 >> 案例 >> 案例首頁

案例頻道

Distributed model predictive control for plant-wide hot-rolled strip laminar cooling process
  • 企業(yè):控制網     領域:人機界面     行業(yè):冶金    
  • 點擊數:2288     發(fā)布時間:2010-03-17 16:18:13
  • 分享到:
1. Introduction

     Recently, customers require increasingly better quality for hotrolled strip products, such as automotive companies expect to gain an advantage from thinner but still very strong types of steel sheeting which makes their vehicles more efficient and more environmentally compatible. In addition to the alloying elements, the cooling section is crucial for the quality of products [1]. Hot-rolled strip laminar cooling process (HSLC) is used to cool a strip from an initial temperature of roughly 820–920 C down to a coiling temperature of roughly 400–680 C, according to the steel grade and geometry. The mechanical properties of the corresponding strip are determined by the time–temperature-course (or cooling curve) when strip is cooled down on the run-out table [1,2]. The preciseand highly flexible control of the cooling curve in the cooling section is therefore extremely important.

        Most of the control methods (e.g. Smith predictor control [3],element tracking control [4], self-learning strategy [6] and adaptive control [5]) pursue the precision of coiling temperature and care less about the evolution of strip temperature. In these methods, the control problem is simplified so greatly that only the coiling temperature is controlled by the closed-loop part of the controller. However, it is necessary to regulate the whole evolution procedure of striptemperature if better properties of strip are required. This is a nonlinear, large-scale, MIMO, parameter distributed complicated system. Therefore, the problem is how to control the whole HSLC process online precisely with the size of
HSLC process and the computational efforts required.

         Model predictive control (MPC) is widely recognized as a practical control technology with high performance, where a control action sequence is obtained by solving, at each sampling instant, a finite horizon open-loop receding optimization problem and the first control action is applied to the process [7]. An attractive attribute of MPC technology is its ability to systematically account for process constraints. It has been successfully applied to many various linear [7–12], nonlinear [13–17] systems in the process industries and is becoming more widespread [7,10]. For large-scale and relatively fast systems, however, the on-line implementation of centralized MPC is impractical due to its excessive on-line computation demand. With the development of DCS, the field-bus technology and the communication network, centralized MPC has been gradually replaced by decentralized or distributed MPC in large-scale systems [21,22] and [24]. DMPC accounts for the interactions among subsystems. Each subsystem-based MPC in DMPC, in addition to determining the optimal current response, also generates a prediction of future subsystem behaviour. By suitably leveraging this prediction of future subsystem behaviour, the various subsystem-based MPCs can be integrated and therefore the overall system performance is improved. Thus the DMPC is a good method to control HSLC. 

        Some DMPC formulations are available in the literatures [18–25]. Among them, the methods described in [18,19] are proposed for a set of decoupled subsystems, and the methoddescribed in [18] is extended in [20] recently, which handles systems with weakly interacting subsystem dynamics. For arge-scale linear time-invariant (LTI) systems, a DMPC scheme is proposed in [21]. In the procedure of optimization of each subsystem-based MPC in this method, the states of other subsystems are approximated to the prediction of previous instant. To enhance the efficiency of DMPC solution, Li et al. developed an iterative algorithm for DMPC based on Nash optimality for large-scale LTI processes in [22]. The whole system will arrive at Nash equilibrium if the convergent condition of the algorithm is satisfied. Also, in [23], a DMPC method with guaranteed feasibility properties is presented. This method allows the practitioner to terminate the distributed MPC algorithm at the end of the sampling interval, even if convergence is not attained. However, as pointed out by the authors of [22–25], the performance of the DMPC framework is, in most cases, different from that of centralized MPC. In order to guarantee performance improvement and the appropriate communication burden among subsystems, an extended scheme based on a so called ‘‘neighbourhood optimization” is proposed in [24], in which the optimization objective of each subsystem-based MPC considers not only the performance of the local subsystem, but also those of its neighbours.

-------------Details please click to download http://www.dlhxzk.com.cn/images/zhengyi.rar---------------

熱點新聞

推薦產品

x
  • 在線反饋
1.我有以下需求:



2.詳細的需求:
姓名:
單位:
電話:
郵件:
主站蜘蛛池模板: 国产亚洲精品a在线观看app-国产亚洲精品A久久777777-国产亚洲精品AV片在线观看播放-国产亚洲精品AV麻豆狂野-亚洲 欧美 国产在线视频-亚洲 欧美 国产 综合五月天 日韩精品免费观看,亚洲精品国产综合一线久久,99精品国产高清一区二区三区香蕉,亚洲图区欧美,日韩电影免费在线观看中文字幕,999国产精品999久久久久久 | 免费看a级-免费看a级毛片-免费看a网站-免费看h的网站-97久久久久-97久久人人 | 国产韩国精品一区二区三区久久-国产国语一级毛片在线视频-国产国语高清在线视频二区-国产国拍亚洲精品午夜不卡17-日韩在线欧美高清一区-日韩在线免费视频观看 | 国产真实乱对白精彩-国产真实露脸乱子伦-国产真实夫妇交换视频-国产这里有精品-亚洲第一国产-亚洲第一成年网站视频 | 欧美一区精品,亚洲综合在线视频,国产v欧美v日韩在线观看,国产精品麻豆,亚洲小色网,欧美a在线观看 | 五月天视频网站,国产成人精品日本亚洲语言,999福利视频,精品123区,国产中文视频,美女视频一区二区三区在线 | 在线亚洲不卡,三上悠亚一区二区观看,91伊人久久,婷婷激情五月,中文字幕久久精品,色综合久久中文字幕 | 欧美日韩中文综合v日本-欧美日韩中文字幕久久-欧美日韩中文在线-欧美日韩中文一区二区三区-欧美日韩中文国产一区二区三区-欧美日韩在线视频观看 | 四色草视频-四散的尘埃在线观看-四库国产精品成人-四虎最新网址入口-国产精品一区二区三区四区五区-国产精品一区二区三区四区 | 四房网,久久久国产99久久国产久,色偷偷男人天堂,九七电影院97网手机版支持,国产人成精品免费视频,五月天最新网站 | 国产精品亚洲日韩欧美色窝窝-国产精品亚洲日韩欧美色窝窝色-国产精品亚洲色婷婷-国产精品亚洲色婷婷99久久精品-国产精品亚洲色婷婷久久99精品-国产精品亚洲色图在线观看 | 一区二区三区欧美日韩-一区二区三区欧美-一区二区三区免费在线视频-一区二区三区免费在线观看-久久精品店-久久精品第一页 | 日本漫画母亲口工子全彩-日本漫画大全无翼乌-日本妈妈在线观看中文字幕-日本妈妈xxxx-操他射他影院-操老太太的逼 | 国产福利在线视频尤物tv-国产福利在线看-国产福利在线高清导航大全-国产福利在线-国产福利影视-国产福利一区二区麻豆 | 欧美黑寡妇香蕉视频-欧美国产一区视频在线观看-欧美国产一区二区三区-欧美国产一区二区-国产成人精品第一区二区-国产成人精品2021欧美日韩 | 天堂网在线最新版www-天堂网在线资源-天堂网在线看-天堂网在线观看视频-日本精品无码特级毛片-日本精品无码一区二区三区久久久 | 青青操影院-青青操网-青草资源站-青草资源视频在线高清观看-国产激情三级-国产激情久久久久影院小草 | 2022精品国产-2022精品福利在线小视频-2022黄网-2022国产男人亚洲欧美天堂-2022国产毛片大全-2022国产精品网站在线播放 | 国产精品福利在线观看入口-国产精品福利在线观看秒播-国产精品福利在线观看免费不卡-国产精品福利一区二区亚瑟-四虎免费入口-四虎免费看片 | 99国产精品欧美久久久久久影院,日本不卡中文字幕,国产片在线观看播放,日韩国产欧美在线观看,久久综合狠狠综合久久97色,婷婷在线影院 | 97色伦人人-97色碰-97视频久久-97视频免费人人观看人人-免费看色片网站-免费看视频的网站 | 久久综合影视-久久综合伊人77777麻豆-久久综合一区二区三区-久久综合一-亚欧三级-亚欧美综合 | 97色伦人人-97色碰-97视频久久-97视频免费人人观看人人-免费看色片网站-免费看视频的网站 | 久久精品一区二区三区不卡牛牛,国产片精品电影www,久久久久久97,www奇米,好姑娘中文在线播放,美女被羞羞视频网站在线 | 国内精品免费久久影院-国内精品蜜汁乔依琳视频-国内精品乱码卡一卡2卡三卡新区-国内精品乱码卡一卡2卡三卡-亚洲国产精品第一影院在线观看-亚洲国产精品VA在线看黑人 | 四色草视频-四散的尘埃在线观看-四库国产精品成人-四虎最新网址入口-国产精品一区二区三区四区五区-国产精品一区二区三区四区 | 国产激情对白一区二区三区四-国产或人精品日本亚洲77美色-国产黄站-国产黄在线免费观看-日韩中文字幕网-日韩中文字幕视频在线观看 | 免费黄色在线观看视频-免费黄色在线观看-免费黄色在线电影-免费黄色在线-成人精品一区二区三区电影-成人精品一区二区三区 | 欧美日韩一日韩一线不卡-欧美日韩一区在线观看-欧美日韩一区视频-欧美日韩一区二区综合在线视频-在线免费观看中文字幕-在线免费观看日本视频 | 国产精品亚洲日韩欧美色窝窝-国产精品亚洲日韩欧美色窝窝色-国产精品亚洲色婷婷-国产精品亚洲色婷婷99久久精品-国产精品亚洲色婷婷久久99精品-国产精品亚洲色图在线观看 | 99只有精品-99这里只有精品在线-99这里只有精品视频-99这里只有精品66视频-欧美国产视频-欧美国产日韩综合 | 欧洲免费极品videos-欧洲美女高清一级毛片-欧洲精品欧美精品-欧洲精品不卡1卡2卡三卡四卡-中午字幕在线观看-中文字日产幕码三区的做法大全 | 99久久这里只精品国产免费,毛片在线播放网站,狠狠色狠色综合曰曰,国产在线成人精品,欧美色视频网,激情五月婷婷综合 | 国产视频自拍一区-国产手机精品一区二区-国产手机视频在线-国产手机视频在线观看-国产手机在线播放-国产手机在线观看精品视频 | 在线日韩亚洲-在线日韩视频-在线日韩欧美一区二区三区-在线日韩欧美-久久精品嫩草影院-久久精品免视看国产盗摄 | 中文高清无码人妻-中文超碰中文字幕-中日韩一卡二卡三卡四卡在线观看-中日韩精品卡一卡二卡3卡-制服丝袜中文在线-制服丝袜在线观看 | 亚洲精品在线观看视频-亚洲精品在线观看-亚洲精品在线第一页-亚洲精品在线播放视频-护士伦理-护士撩起裙子让你桶的视频 | 婷婷四房综合激情五月在线,国产精品吹潮在线观看中文,久久99精品亚洲热综合,成人久久久久,99精品久久99久久久久,久久福利小视频 国内自拍中文字幕,久久久一本精品99久久精品66,精品400部自拍视频在线播放,国产麻豆精品在线,日韩欧美高清视频,久久久免费精品视频 | 国产婷婷视频-国产婷婷丁香久久综合-国产天天在线-国产天天操-小草在线免费观看视频-小草在线观看视频免费2019 | 国产一卡2卡3卡四卡精品网站-国产一久久香蕉国产线看观看-国产一进一出视频网站-国产一级在线现免费观看-亚洲高清国产拍精品影院-亚洲高清二区 | 亚洲福利区-亚洲福利精品电影在线观看-亚洲福利电影一区二区?-亚洲风情无码免费视频-国产亚洲视频在线-国产亚洲视频精彩在线播放 |