日本在线www-日本在线播放一区-日本在线不卡免费视频一区-日本在线不卡视频-成人影院久久久久久影院-成人影院一区二区三区

ABB
關注中國自動化產業發展的先行者!
CAIAC 2025
2025工業安全大會
OICT公益講堂
當前位置:首頁 >> 資訊 >> 行業資訊

資訊頻道

工業以太網/通信技術的未來-現狀和發展以及IAONA組織
  • 點擊數:7734     發布時間:2005-06-13 14:11:50
  • 分享到:
The paper gives a short overview of some Industry Ethernet Protocols and their features, and introduces the organization of IAONA.
關鍵詞:

摘要:概述了幾種工業以太網協議及其特征,并介紹了IAONA組織。

關鍵詞:以太網;IAONA

 

Abstract: The paper gives a short overview of some Industry Ethernet Protocols and their features, and introduces the organization of IAONA.
Key words: Ethernet; IAONA

Introduction
While single organizations at the beginning of the Ethernet area were keen on (and partially still are...) providing the all-embracing all-round solution by their own industrial Ethernet implementation, meanwhile the notion that special applications need special protocols is starting to pervade.

IAONA's partner-organizations ETG (EtherCAT Technology Group), EPSG (Ethernet Powerlink Standardization Group), IGS (Interessengemeinschaft SERCOS interface), Modbus-IDA and ODVA (Open DeviceNet Vendor Association) commonly have the goal to fosteoverview of some features of the considered industrial protocolsr the development of Ethernet and the related protocol family TCP/IP. Thereby it has to be noted that each of these organizations possesses its own solution - e.g. in the real-time area - which is tailored to the needs of the specific customer groups; these solutions therefore vary in form and extent of their respective technology. However, for all organizations certain topics are of the same relevance and therefore can be solved by comprehensive architectures and concepts. Examples for this are both IAONA's Installation Guide and IAONA's Handbook for Network Security as well as the in common written general handbooks (German and English edition available) on industrial Ethernet.

The Overview of Industrial Ethernet  Protocols
Since the foundation of IAONA in 1999 several Ethernet based industrial protocols, caused by strong differing and partly contradicting user requirements, have been developed. In the following a short overview of some of these protocols will be given:

EtherCAT (Ethernet for Control Automation Technology)

EtherCAT (Ethernet for Control Automation Technology) is the Ethernet-based real-time automation concept developed by the German company Beckhoff. In contrast to other Ethernet-based automation solutions, the Ethernet packet is no longer received, then interpreted and copied as process data at each device within the network. Instead, the Ethernet frame is processed on the fly: For each module within the network, data addressed to that device are read, while the telegram is forwarded on to the next device. Similarly, input data are inserted while the telegram passes through. The telegrams are only delayed by a device in a few nanoseconds which should provide increasing performance of the system compared with other Ethernet-based solutions. The last device within the network segment sends the frame back to create a logical and physical ring structure. All transferred data comprises fully compatible Ethernet frames; each device converts these Ethernet frames to an internal fieldbus.

The real-time Ethernet frames have priority over other data (such as those required for configuration or diagnosis, etc.) via an internal prioritisation system. Configuration data are transmitted in the time gaps if sufficient time is available or by using a specific service channel. Fully maintained Ethernet functionality of the operating system achieves compatibility with conventional IP protocols.

Figure1: EtherCAT Stack

The basic development phase and the technical evaluation have been finalished, currently the implementation from FPGA to ASIC is in progress. Slave controllers and ASICs will be available from the second quarter of 2005.

EtherNet/IP

EtherNet/IP, based on Ethernet TCP or UDP IP, is a stack extension for automation industry communication. The 'IP', in EtherNet/IP, stands for Industrial Protocol. EtherNet/IP was introduced by the ODVA (Open DeviceNet Vendor Association) towards the end of 2000, development and specification work is achieved by the SIGs (Special Interest Groups). ODVA has more than 300 members world-wide, a Conformance Test Lab for Europe is headed by the University of Magdeburg.

Basically, in EtherNet/IP the upper-level Control and Information Protocol (CIP) which is already used in ControlNet and DeviceNet is adapted to Ethernet TCP/IP and UDP/IP respectively. The specification of EtherNet/IP is public and free of charge at ODVA's website. In addition to typical office applications like HTTP, FTP, SMTP and SNMP, EtherNet/IP provides a Producer/Consumer service allowing the transmission of time-critical messages between controller and I/O modules.

Secure data transmission of non cyclic messages (program up/download, configuration) is realised using TCP and time-critical transmission of cyclic control data is handled by UDP stack. To reduce implementation efforts of EtherNet/IP, standard device profiles for different types of devices, e.g, pneumatic valves or motion controllers, have been predefined.

The CIP protocol will currently be extended to follow real-time and safety requirements. CIPsync is an extension realising time synchronisation mechanisms in distributed systems using a method based on IEEE 1588 standard while CIPsafety is an extension integrating safety mechanisms and enabling safety control systems based on Ethernet/IP. Both extensions are currently under development. First products for CIPsafety are announced for 2005 and for CIPsync for 2006.

Figure 2: EtherNet/IP Stack

ETHERNET Powerlink
Originally, ETHERNET Powerlink has been developed by the Austrian company Bernecker + Rainer (B&R). After publishing the ETHERNET Powerlink standard in April 2002, now B&R is working together with companies and organisations like Hirschmann, Lenze, Kuka, and the Zurich University of Applied Sciences Winterthur (as co-ordinator of the ETHERNET Powerlink Standardization Group, EPSG). This consortium will enhance the ETHERNET Powerlink standard to meet the requirements of synchronous drives (motion control) and other specific devices. For example, synchronisation mechanisms based on IEEE 1588 standard will be implemented.

Figure 3: Powerlink Stack

In ETHERNET Powerlink the TCP (and UDP) IP stacks in Layer 3 and 4 are extended by the ETHERNET Powerlink protocol. An additional middleware is based on TCP (and UDP) IP as well as the ETHERNET Powerlink stack (asynchronous data transfer). Moreover, there is a stack for the fast, cyclic data transfer (isochronous data transfer).

The ETHERNET Powerlink stack completely controls the data traffic on the network. The method is called Slot Communication Network Management (SCNM) and will provide real-time capability over Ethernet. Each station has timed and strongly limited communication rights and can send data to each other station within the network. At a particular time only one station can access the bus so collisions are impossible and so achieve strict deterministic performance. In addition to these individual time-slots for isochronous data transfer, the SCNM provides common time-slots for asynchronous data transfer. An extended version (Version 2) contains communication and device profiles based on CANopen (in cooperation with the CAN in Automation (CiA) group). Version 3 of ETHERNET Powerlink includes time synchronisation mechanisms based on the IEEE 1588.
For ETHERNET Powerlink the first products are available on the market.

JetSync
The German company Jetter offers a method of synchronisation via Ethernet TCP/IP which it is called JetSync. It uses technology similar to IEEE 1588 but also supports asynchronous communication. The company claims that its system leads to a more open and flexible structure than achieved by using strict synchronisation time-slot methods. JetSync supports motion control applications as well as transmission of ordinary asynchronous data through TCP/IP. This, says the company, achieves compatibility using standard components for communication between PLCs, drives, remote I/O modules and SCADA components. Jetter claims that synchronisation of motion axes to better than 10μs axis jitter can be achieved just using TCP/IP alone running on a standard Ethernet infrastructure.

Modbus/TCP
The recently merged Modbus-IDA Group (domicile is in the USA) is working towards further development of the IDA architecture for distributed control systems using Modbus/TCP for the message structure.

Modbus/TCP is a derivate of the Modbus protocol and was developed by Modicon (Schneider Electric), the specification has been published in 1999 and is available in the Internet at no charge. Since 2004, Modbus/TCP protocol is available as PAS (Publicly Available Specification).

Modbus/TCP is based on Ethernet and standard TCP/IP and mounts directly on Layer 4 (TCP/UDP). It defines a simple structured, open and widely used transmission protocol for a master-slave communication. An comprehensive architecture concept does not exist, basically a Modbus telegram is embedded in the frames of the under-lying layer (TCP, IP, …) and transferred via the physical medium.

Figure 4: Modbus/TCP Stack

The Modbus telegram consists of the address of the slave, the Modbus function code, the data to be transferred and a checksum which will not be used here since the error detection mechanisms of the under-lying layers (Layers 1-4) will be used instead. The function code represents the action the slave has to perform. In a simple manner a Modbus/TCP compliant slave (e.g. I/O module) can be controlled with a small number of Modbus functions.

The Modbus/TCP protocol has been submitted to the IETF (Internet Engineering Task Force) to introduce it as an Internet standard. This could mean e.g. that Modbus/TCP like ftp, would be implemented in all common operating systems.

Since ModbusTCP is the "oldest" Ethernet based industrial protocol the number of available devices using this protocol is very high.

SERCOS (SErial Real-Time COmmunication System)
SERCOS (SErial Real-Time COmmunication System) has been developed by an industrial consortium in co-operation with ZVEI and VDM in the 1980s.
Marketing, further technical development work and standardisation activities are under responsibility of the IGS (Interest Group SERCOS interface) which was founded in 1990.

After SERCOS interface has been approved as international standard in 1995 (IEC 61491), further development steps took place within the second SERCOS generation, e.g. increasing of transfer rate.

Figure 5: SERCOS Stack

Real-time behaviour and determinisms will be achieved by using time-slot mechanisms (Time Division Multiplex Access or TDMA) and hardware synchronisation. The time-slots allow for transmission of time-critical and non-critical data in alternation. SERCOS was originally developed as drive interface but includes conventional I/O modules as supported devices.

SERCOS III has been designed for Industrial Ethernet. Plans include replacement of the hardware based communication interface with more flexible solutions, for instance in supporting several software based automation protocols and the use of standard hardware components (Ethernet coupler instead of fibre optic coupler). SERCOS III is currently in the implementation phase. First soft drivers and a starter kit are available to improve product development.

Safeethernet
As a product of the German company HIMA, the safeethernet protocol uses a network based on standard Ethernet and hence allows the application of standard IT protocols. As the name suggests, application areas include safety-related automation systems, products are available since the late 1990's.

In addition to the protocols described above, more protocols have defined. With IEC, there are currently 10 Publicly Available Specifications. 

Conclusion
Considering the available Ethernet based protocols for automation industry it becomes obvious, that Ethernet is even suited for motion control applications. Based on its requirements, the user has to decide which protocol he should apply within his system. Here he has to consider several aspects: Mainly, the question regarding real-time capabilities, but also the investigation of further development strategies and the application of the protocols have to be considered. The table 1 gives an overview of some features of the considered industrial protocols.

Table 1 overview of some features of industrial protocols

 

Architecture

Hardware Requirements

Time Behaviour *)

More  Informationen

EtherCAT

Real-Time Subnet

Standard

Cycle: 100 ms for 100 synchronised drives

www.ethercat.org

 

EtherNet/IP and CIPsync

Open

Standard

Cycle: 500 ms-10 ms, Jitter: 500 ns

www.odva.org

www.ethernetip.de

 

ETHERNET Powerlink

Real-Time Subnet

Standard

Cycle: < 400 ms, Jitter: < 1 ms

www.ethernet-powerlink.com

 

JetSync

Open

Standard

Cycle: < 5 ms, Jitter: < 10 ms

www.jetter.de

Modbus-IDA

Open

Standard

Cycle: ca. 5-10 ms

www.modbus-ida.org

 

SERCOS III

Real-Time Subnet

Standard / Dedicated (FPGA)

Cycle: 31,25 ms @ 10 synchronised drives, 250 ms @ 100 drives, Jitter: < 1 ms

www.sercos.de

 

Safeethernet

Open

Standard

k.A.

www.hima.de

*) Values given by manufacturers.

The Organization  of IAONA
IAONA currently has a board of directors with five members, which is supported by the business office located in Magdeburg at the Otto-v.-Guericke-University. Currently members of the board are:

■ B. Dumortier, Responsable Certification de produits, Secretary TC 65 of IEC (Industrial Process Measurement and Control), Schneider Electric Industries SA, Grenoble, France;
■ Prof. R. Keller, Hirschmann Electronics GmbH, Neckartenzlingen;
■ K. Voss, Managing Director, ODVA, Ann Arbor, USA;
■ Dr. G. Beckmann, Lenze Drive Systems, Aerzen;
■ Jürgen Gorka, WAGO Kontakttechnik, Minden.

The business office is headed by Dr. K. Lorentz and Dr. A. Klostermeyer who also head the Center Distributed Systems at the IAF of the University of Magdeburg.

IAONA's technical work is done within the Joint Technical Working Groups (JTWGs), which are open to all members of IAONA. Furthermore, the JTWGs are open for all members of the IAONA partner organizations and invited (external) experts.

The coordination of the common technical work of the above mentioned organizations on the platform IAONA is done by the Technical Steering Committee (TSC). The formation of the structure and the rules was carefully done to allow for balance, equality, and transparency in order to insure that no single group dominates IAONA.

Figure 6: Structure of IAONA's TSC

As explained above, most remarkable for the JTWGs is especially the co-operation on technical topics which embraces all partner organizations. Additional to this, IAONA invites interested external experts to co-operate and work within these groups. The participation within these working groups is free of charge for all members of IAONA. The practical work of the JTWGs is done by usage of the latest Internet technologies, thus a physical presence of the experts is not obligatory. The convocation and closing of JTWGs lies within the responsibility of the TSC. It establishes the JTWGs according to the users', members' and partner organisations' demand.

作者簡介:Kai Lorentz1969-),男,博士,現任IAONA工業以太網學術團體主席。

熱點新聞

推薦產品

x
  • 在線反饋
1.我有以下需求:



2.詳細的需求:
姓名:
單位:
電話:
郵件:
主站蜘蛛池模板: 青草国产-青草草在线视频-青草草在线观看免费视频-青草草在线-国产高清自偷自在线观看-国产高清自拍视频 | kedou.xxx-lutube成人福利在线观看-luxu259在线中文字幕-m3u8久久国产精品影院-meisa hanai-mimiai最新网址 | 任你躁国语自产二区在线播放-任你懆视频 这里只有精品-人与人特黄一级-人与禽物videos另类-扒开女人下面使劲桶视频-扒开女人下面使劲桶动态图 | 成人久久久久-成人久久久-成人久久精品一区二区三区-成人久久18免费游戏网站-成人久久18免费网-成人久久18免费软件 | 精品久久久久久久中文字幕,日韩欧美国产电影,日韩国产欧美一区二区三区在线,青青草原国产一区二区,日本成人久久,欧美在线视频二区 | 久久道-久久大香伊蕉在人线国产昨爱-久久大香香蕉国产免费网站-久久大-天天做天天爽天天谢-天天做天天射 | 手机看片福利永久国产日韩-手机看片369-手机精品在线-手机国产乱子伦精品视频-国产精品嫩草影院在线观看免费-国产精品嫩草影院在线播放 | 亚洲成人777777-亚洲成av人在线视-亚洲成av人影片在线观看-亚洲成av人片在线观看-玖玖色资源-玖玖色在线 | 老司机午夜精品网站在线观看-老司机午夜精品视频在线观看免费-老司机午夜精品视频观看-老司机午夜精品视频播放-一本色道久久88一综合-一本色道久久88综合日韩精品 | 黄色在线免费播放-黄色在线免费-黄色在线看网站-黄色在线观看网站-色综合小说天天综合网-色综合小说久久综合图片 | 91精品国产色综合久久不卡蜜,999国内精品永久免费视频试看,五月婷婷六月香,欧美成人综合在线,日韩亚洲第一页,国产欧美日韩不卡在线播放在线 | 热久久国产-热99这里只有精品-热99这里有精品综合久久-热99在线观看-国产精品99久久久-国产精品99久久99久久久看片 | 五月婷六月婷婷,97九色,成年人国产,精品久久久久久久,久久久久久久国产精品电影,国产在线观看青草视频 | 欧美黄网在线-欧美黄色影院-欧美黄色影视-欧美黄色一级网站-99免费看-99免费精品视频 | 精品久久久久久蜜臂a∨-精品久久久久久蜜臀-精品久久久久久免费看-精品久久久久久免费影院-精品久久久久久清纯-精品久久久久久日韩字幕无 | 激情区小说区偷拍区图片区-激情偷乱人成视频在线观看-激情文学另类小说亚洲图片-激情销魂乳妇奶水小说-香蕉九九-香蕉成人啪国产精品视频综合网 | 国产精品va在线播放我和闺蜜-国产精品va在线观看无码不卡-国产精品V日韩精品V在线观看-国产精品V无码A片在线看-国产精品wwwcom976con-国产精品XXXXX免费A片 | 国产美女小视频-国产美女网站视频-国产美女网站-国产美女特级嫩嫩嫩bbb-天天干视频在线观看-天天干视频在线 | 97色伦人人-97色碰-97视频久久-97视频免费人人观看人人-免费看色片网站-免费看视频的网站 | youjizz日本人-youjizz亚洲-youpornyoujizz中国-yy6080久久-欧美日韩国产在线-欧美日韩国产在线播放 | 香蕉成人啪国产精品视频综合网-香蕉草草久在视频在线播放-香蕉a视频-香蕉69精品视频在线观看-国产视频1区-国产视频1 | 制服师生一区二区三区在线-制服师生av在线-制服 丝袜 亚洲 中文 综合-直接看毛片-欧美视频在线观看视频-欧美视频在线观看免费最新 | 国产日韩精品欧美一区-国产日韩高清一区二区三区-国产日韩不卡免费精品视频-国产日产欧美精品一区二区三区-午夜国产精品免费观看-午夜国产精品理论片久久影院 | 一个人看的在线www高清视频-一个人看的小说在线阅读-一个人看的手机视频www-一个人看的视频在线观看免费播放动漫-久久99精品久久久久久秒播放器-久久99精品久久久久久秒播 | 欧美精欧美乱码一二三四区,怡红院五月天,国色天香社区在线看免费,水蜜桃视频在线高清观看,日韩欧美在线免费观看,水蜜桃在线视频 国产夜色福利院在线观看免费-国产夜趣福利免费视频-国产野花视频天堂视频免费-国产亚洲综合一区二区在线-日韩精品在线观看免费-日韩精品在线电影 | 一区二区三区欧美日韩-一区二区三区欧美-一区二区三区免费在线视频-一区二区三区免费在线观看-久久精品店-久久精品第一页 | 2022精品国产-2022精品福利在线小视频-2022黄网-2022国产男人亚洲欧美天堂-2022国产毛片大全-2022国产精品网站在线播放 | 欧美人成在线视频-欧美人成一本免费观看视频-欧美人xxxxxbbbb-欧美区在线-在线不卡免费视频-在线播放周妍希国产精品 | 日韩在线观看网站-日韩在线观看视频网站-日韩在线观看视频免费-日韩在线观看视频黄-日韩在线观看免费完整版视频-日韩在线观看免费 | 亚洲色图网站-亚洲色图图片专区-亚洲色图图片区-亚洲色图图片-精品久久久中文字幕一区-精品久久久中文字幕二区 | 亚洲视频一区二区,国产一区二区网站,国产精品…在线观看,欧美高清正版在线,欧美日韩 国产区 在线观看,亚洲最新视频在线观看 | 国产精品无码2021在线观看-国产精品污-国产精品网站在线进入-国产精品网站在线观看-四虎免费久久影院-四虎毛片 | 国产精品高潮呻吟AV久久-国产精品高潮呻吟AV久久床戏-国产精品高潮呻吟AV久久动漫-国产精品高潮呻吟AV久久黄-国产精品高潮呻吟AV久久无码-国产精品高潮呻吟爱久久AV无码 | 九九激情网,日韩色综合,成人小视频网站,国产永久在线观看,污黄视频在线观看,看国产一级片 | 欧美中出,国产欧美又粗又猛又爽老,日本啊v,欧美日韩欧美,国产va在线观看,国产一区二区三区在线视频 | 亚洲伦,视频二区 素人 欧美 日韩,亚洲精品美女久久久aaa,伊人婷婷色,国产福利一区二区三区在线观看,国产成人亚洲欧美三区综合 | 莜田优在线观看-尤物最新网址-尤物综合-尤物自拍-久久久久久网址-久久久久久网站 | 91精品久久久久久久久无码变态-91精品久久久久久久久中文字幕-91精品久久久久久久蜜臀-91精品久久久久久久青草-91精品久久久久久中文字幕-91精品久久久久久综合五月天 | 欧美日日操,日日爱网站,99久久久久久久,日本高清不卡免费,久久免费观看国产精品,秋霞在线观看视频一区二区三区 | 精品国产互换人妻麻豆-精品国产经典三级在线看-精品国产精品人妻久久无码五月天-精品国产九九-精品国产剧情AV在线观看-精品国产露脸久久AV麻豆 | 天美传媒影视mv-天美传媒视频原创在线观看-天美传媒免费-天美传媒麻豆自制剧-国产精品线在线精品国语-国产精品线在线精品 |