作者:王輝東,陳鋒(國(guó)網(wǎng)浙江杭州市余杭區(qū)供電有限公司,浙江 杭州 310007)
摘要:高壓開關(guān)柜發(fā)生局部放電時(shí)產(chǎn)生的超聲波信號(hào)中存在著大量的信息,局部放電作為開關(guān)柜絕緣故障的重要征兆及表現(xiàn)方式,其類型的識(shí)別對(duì)于開關(guān)柜絕緣狀態(tài)的評(píng)估具有重要的意義。為了準(zhǔn)確地識(shí)別高壓開關(guān)柜局部放電類型,采用經(jīng)驗(yàn)?zāi)B(tài)分解(EMD)的方法對(duì)局放信號(hào)進(jìn)行分解并提取能量信息,利用支持向量機(jī)(SVM)建立高壓開關(guān)柜局部放電信號(hào)分類模型。實(shí)驗(yàn)結(jié)果驗(yàn)證了上述方法的有效性。為了解決SVM核函數(shù)g和非負(fù)懲罰因子C主觀選取問(wèn)題,運(yùn)用灰狼算法(GWO)優(yōu)化這兩個(gè)參數(shù)。研究結(jié)果表明,與SVM、PSO-SVM和GA-SVM相比,GWOSVM可有效提高開關(guān)柜局放信號(hào)分類精度。
關(guān)鍵詞:經(jīng)驗(yàn)?zāi)B(tài)分解;灰狼算法;支持向量機(jī);分類識(shí)別;遺傳算法;粒子群算法
Abstract: There is a lot of information in ultrasonic signals generated when partial discharge occurs in high voltage switchgear. Partial discharge is an important sign and manifestation of insulation failure of switchgear. The identification of its type is of great significance for the assessment of insulation state of switchgear. In order to identify the partial discharge type of high voltage switchgear accurately, the empirical mode decomposition (EMD) method is used to decompose the local discharge signal and extract the energy information. A support vector machine (SVM) is used to establish the classification model of partial discharge signal of high voltage switchgear.Experimental results verify the effectiveness of the above methods. In order to solve the problem of subjective selection of SVM kernel function g and non-negative penalty factor C,the gray Wolf algorithm (GWO) was used to optimize these two parameters. Compared with SVM, PSO-SVM and GA-SVM,GWO-SVM can effectively improve the classification accuracy of switching cabinet signals.
Key words: Empirical modal decomposition; Gray wolf algorithm;Support vector machine; Classification and identification;Genetic algorithms; Particle swarm optimization
在線預(yù)覽:基于EMD分解和GWO-SVM的開關(guān)柜局放信號(hào)識(shí)別
摘自《自動(dòng)化博覽》2019年12月刊






案例頻道