日本在线www-日本在线播放一区-日本在线不卡免费视频一区-日本在线不卡视频-成人影院久久久久久影院-成人影院一区二区三区

ABB
關注中國自動化產業發展的先行者!
CAIAC 2025
2025工業安全大會
OICT公益講堂
當前位置:首頁 >> 案例 >> 案例首頁

案例頻道

Industrial Communication with Ethernet and Fieldbuses
  • 企業:控制網     領域:工業以太網     行業:其他    
  • 點擊數:2415     發布時間:2004-09-16 16:02:00
  • 分享到:

 

Martin Müller

 

        With its open protocol structures, its strengths in universal communication and its free choice of topology, Ethernet has long since established itself as the standard in office communication. In the field of industrial communications, on the other hand, various Fieldbuses have emerged to date as the defacto standard. This is largely due to geographical reasons or specific application requirements. In countless machines and systems worldwide, they serve to connect sensors and actuators with control technology. Ethernet is already used in the industry for communicating between various machines and subsystems. It is therefore natural and obvious that the industry should also be interested in using the global communication standard Ethernet for connecting sensors and actuators. However, this is not possible without modifying or adding to the standard Ethernet technology. The reasons for this include the complexity of the protocol, the processing power required in each simple device and the increased project efforts. As a result, various companies and organizations are working on Ethernet extensions, especially those that will enable real-time processing.

Fig.1  Fieldbus systems such as Interbus are currently the standard in industrial communications

 

Requirements on industrial communications

        In industrial automation solutions, communications systems must primarily transport I/O signals (bits) between the control unit, sensors and actuators. Other key tasks include the synchronization of drive systems and the transfer of safety-oriented signals. Security technology is currently being integrated into Fieldbus systems and is now being used in applications for the first time. For Ethernet, there is no open and standardized method to facilitate this. A further key requirement on industrial communications systems is vertical integration, in other words the universal and transparent linking of the factory domain with the office domain. Ethernet is currently being used chiefly in this context where it is clearly advantageous.

 

        In addition to the general requirements of industrial communications systems listed above, there are a few key criteria that an Ethernet-based communications system must meet before users will readily switch from the Fieldbus technology being used successfully at present to the Ethernet technology of the future.

First of all, an Ethernet-based communications system must satisfy real-time requirements in the sub-millisecond region. To facilitate this, a suitable protocol and possibly also special ASICS may be required that can also be integrated into simple devices. Various concepts exhibit tremendous differences, especially in this respect, since the existing Ethernet system is bent so far in places that interaction with standard components is no longer possible. So while excellent performance values are generally achieved with this solution, the demand for open, transparent communication is not met.

 

        In order to reduce the complexity of future automation solutions, modular control and functional units are required that operate autonomously in the overall system and communicate with each other via suitable networks. This makes it possible to optimally automate the mechanical modules that are generally already present and assemble machines from the various functional units. In terms of the communications system, an architecture is required where the distributed control intelligence can be connected and integrated. The various communications concepts may well make it possible to distribute control functions around the system, but only very few systems offer a true architecture for distributing intelligence.

Fig.2  Future communications systems must support distributed automation architectures

 

        To date, users have invested several billion dollars in systems and machines that are based on Fieldbus systems. According to a study carried out by Frost & Sullivan, Interbus alone represents an investment volume of more than 1 billion dollars. Hence there is a clear demand from users and manufacturers that new, Ethernet-based solutions allow seamless integration of Fieldbus systems. It is not sufficient to use simple gateways, at least not in the way they are normally used, since they would represent a change in the operating and diagnostic philosophy. Modern concepts provide for proxy structures in the communication architecture so that it is even possible to access data on Fieldbus devices without causing an interruption.

 

        Having access to the main control systems is just as important as the technical performance data of the communications system. In this regard, it is worth mentioning the market leaders Siemens, Rockwell and Schneider, but also PC-based control technology. In the context of Ethernet-based communication systems, it is frequently only PCs that are mentioned as a control system. This overlooks the fact that they currently hold a less than 10% share of the control market.

 

        A further key point in the evaluation of Ethernet-based communications systems for industrial use is whether they have a guaranteed future or not. Generally, it can be said that the more companies support a system and the larger market significance they gain, the more likely it is that the system will also still be available in ten or twenty years’ time wherein its technology is continuously developed.

 

        To summarize, it can be stated that the following represent key assessment criteria when evaluating Ethernet-based communications systems:

        (1)  Real-time communication

        (2)  Architecture for distributed automation

        (3)  Architecture for the integration of Fieldbuses

        (4)  Support for connectivity to all key control systems

        (5)  Guaranteed future

 

Decision in favor of the most comprehensive concept

        Profinet’s SRT (Soft-Real-Time) and IRT (Isochronous-Real-Time) concepts are designed for real-time communication and are graduated according to the needs of the various device classes. Simple I/O devices are handled with Profinet I/O in the conventional view of the local peripherals. Devices and systems with low real-time requirements can be operated easily and flexibly with SRT. In highly dynamic drive applications, IRT is the solution of choice when used in conjunction with suitable hardware support for the sub-millisecond applications with high synchronicity demands.

 

        For intelligence distribution, Profinet offers CBA (Component-Based-Architecture), a component-based architecture model that can be used to take control of even complex and distributed automation structures. Key aspects in this regard include the component model, which is based on the Windows technology DCOM, together with switching of the functional components via circuit editors, for example.

 

Fig.3  Distribution of update times with PROFInet

 

        With Profinet, Fieldbus systems are integrated via defined proxy structures so that devices and objects connected to the Fieldbus are seamlessly integrated into the Profinet concept.

 

        None of the market-leading control systems enjoy support from all of the major control suppliers. Profinet is currently supported by Siemens, Bosch, Phoenix Contact and other control suppliers and expressed in terms of market share, this represents the widest support among all the systems.

 

        As already mentioned in the context of the connection to control systems, the future of the Profinet concept is guaranteed thanks to support from market-leading firms. Profinet is not only supported by the Profibus user organization, but also by the Interbus Club, who represent two of the world’s leading organizations and systems in the Fieldbus sector.

 

        If one examines the evaluation criteria noted above and compares all of the Ethernet-based communications concepts that are currently under discussion, it is clear that Profinet represents the most comprehensive concept. Many other concepts try to score points with maximum performance in the real-time sector, although they sacrifice other key aspects such as the distribution of intelligence or the integration of Fieldbuses, or are only available for PC-based control system, The criteria mentioned formed the basis for Phoenix Contact’s decision to choose Profinet, and will also provide a future guarantee that this system will prosper on the worldwide market.

Fig.4  Switches, gateways and I/O products from the Factory Line family bring the Ethernet to the field

熱點新聞

推薦產品

x
  • 在線反饋
1.我有以下需求:



2.詳細的需求:
姓名:
單位:
電話:
郵件:
主站蜘蛛池模板: 开心色99xxxx开心色-开心色99-开心久久婷婷综合中文字幕-开心 色 欧美 图-中文字幕人乱码中文-中文字幕人妻丰满熟女 | 久 在线播放-九月婷婷人人澡人人添人人爽-九月婷婷人人澡人人爽人人爱-九月丁香婷婷亚洲综合色-天天干天天射天天-天天干天天色综合网 | 激情综合五月亚洲婷婷,国内亚州视频在线观看,成人国产精品免费网站,欧美性猛交99久久久久99,久久国产欧美日韩精品,国产精品无码久久av | 免费色黄网站-免费人成在线看-免费人成在线观看网站视频-免费人成在线观看网站-伊人蕉久中文字幕无码专区-伊人蕉久影院 | 免费黄色在线播放-免费黄色一级片-免费黄色一级毛片-免费黄色一级-亚洲婷婷综合网-亚洲婷婷天堂在线综合 | 国产偷啪视频一区-国产偷啪-国产偷窥女洗浴在线观看亚洲-国产偷窥-无套啪啪-无套大战白嫩乌克兰美女 | 日本a天堂,亚洲精品乱码久久久久久,欧美精品一区二区三区在线播放,国产亚洲视频在线观看,国产丰满眼镜女在线观看,亚洲日韩欧美综合 | 欧美在线一,91成人爽a毛片一区二区,在线播放国产精品,亚洲欧美日韩高清,zozozo欧美人禽交另类视频,久久精品无码一区二区日韩av | 成人a毛片手机免费播放-成人a毛片在线看免费全部播放-成人a视频高清在线观看-成人a视频片在线观看免费-欧美三级中文字幕hd-欧美三极 | 一区二区在线视频观看-一区二区在线免费视频-一区二区在线看-一区二区在线电影-久久精品久久精品国产大片-久久精品久久精品 | 人妻不敢呻吟被中出A片视频-人妻超级精品碰碰在线97视频-人妻换人妻AA视频-人妻寂寞按摩中文字幕-人妻精品国产一区二区-人妻久久久精品99系列A片毛 | 亚洲女同在线观看-亚洲女同在线-亚洲女同视频-亚洲女同精品中文字幕-美国激情ap毛片-美国黄色一级毛片 | 天天干天操-天天干天天爱天天操-天天干天天操天天干-天天干天天操天天摸-久久2-久久2017 | 亚洲黄色网页-亚洲黄色三级视频-亚洲黄色片免费看-亚洲黄色免费在线观看-国产中文字幕免费观看-国产中文字幕乱码一区 | 91香蕉视频在线播放-91香蕉视频在线看-91香蕉小视频-91香蕉亚洲精品人人影视-91香蕉影院-91香蕉在线视频 | 久久精品国产2020-久久精品高清视频-久久精品高清-久久精品福利视频-久久精品福利-久久精品店 | 久久夜视频-久久夜色视频-久久夜色精品国产欧美-久久夜色精品国产噜噜小说-久久夜色精品国产-久久亚洲这里只有精品18 | 欧美日韩亚洲一区二区三区在线观看-欧美日韩亚洲第一区在线-欧美日韩亚洲成人-欧美日韩午夜群交多人轮换-bbwvideos欧美老妇-bbwvideoa欧美老妇 | japan hd xxxxx-ijzz日本-i91media果冻传媒-i91.media果冻传媒-h网址在线观看-h网址在线 | 极品美女在线观看国产一区-极品嫩模一区二区三区-极品人妻被黑人中出-极品少妇xxxxⅹ另类-极品少妇xxxx精品少妇-极品少妇XXXX精品少妇偷拍 | 亚洲A片一区日韩精品无码-亚洲H成年动漫在线观看不卡-亚洲VA欧美VA天堂V国产综合-亚洲VA天堂VA欧美片A在线-亚洲爆乳精品无码AAA片-亚洲不卡高清免v无码屋 | 国产一级免费-国产一级毛片网站-国产一级毛片潘金莲的奶头-国产一级毛片大陆-日本中文字幕免费-日本中文字幕高清 | 亚洲精品在线免费观看,在线日韩欧美,午夜高清在线观看免费完整版,亚洲综合久久久,久久一区二区三区免费,日韩小视频在线 | 中文字幕第一页亚洲-中文字幕第一页国产-中文字幕第38页永久乱码-中文字幕不卡在线观看-久久久久青草大香线综合精品-久久久久青草 | 极品丝袜小说全集-极品丝袜乱系列在线阅读-极品丝袜老师h系列全文阅读-极品手交handjobtattoo-亚洲男人网-亚洲男人天堂影院 | 玖玖射,国内高清久久久久久久久,久久婷婷丁香,91精品自在拍精选久久,不卡一区二区三区四区,奇迹少女第四季中文版免费全集 | 岛国精品在线观看-岛国精品在线-岛国大片在线免费观看-岛国大片在线观看完整版-日本老师xxxx88免费视频-日本久久综合网 | 我爱52av好色,一级毛片大全免费播放,成人午夜无人区一区二区,国产一区国产二区国产三区,青青青青久久精品国产h,狠狠操五月天 | 国产福利91-国产福利2021最新在线观看-国产福利1000-国产二区自拍-国产二级片-国产第一综合另类色区奇米 | 在线观看 一区-在线观看 亚洲-在线观看 日韩-在线观看 免费高清视频-久久婷婷国产一区二区三区-久久婷婷国产五月综合色啪最新韩国 | 香蕉成人啪国产精品视频综合网-香蕉草草久在视频在线播放-香蕉a视频-香蕉69精品视频在线观看-国产视频1区-国产视频1 | 国产精品视频你懂的-国产精品视频网-国产精品视频一区二区猎奇-国产精品视频一区二区三区-国产精品视频一区二区三区不-国产精品视频一区二区三区不卡 | 91噜噜噜在线观看-91露脸对白-91麻豆福利-91麻豆高清国产在线播放-91麻豆国产-91麻豆国产福利精品 | 美女三级毛片-美女牲交视频一级毛片无遮挡-美女视频大全视频a免费九-美女视频黄a视频全免费网站色窝-美女视频黄的全是免费-美女视频秀色福利视频 | 久久久久久99精品-久久久久久99-久久久久久91香蕉国产-久久久久久91精品色婷婷-中国一级片免费看-中国一级毛片国产高清 | 国产视频xxxx-国产视频www-国产视频a区-国产视频99-香港一级纯黄大片-香港一级a毛片在线播放 | 波多野结衣的av一区二区三区-波多野结衣的电影-波多野结衣的中文-波多野结衣第二页视频-波多野结衣电影网-波多野结衣电影一区二区 | 国产福利91-国产福利2021最新在线观看-国产福利1000-国产二区自拍-国产二级片-国产第一综合另类色区奇米 | 尤物tv-呦导航福利精品-永久在线视频-永久在线免费-欧美精品在线看-欧美精品在线观看视频 | 国产日韩精品欧美一区-国产日韩高清一区二区三区-国产日韩不卡免费精品视频-国产日产欧美精品一区二区三区-午夜国产精品免费观看-午夜国产精品理论片久久影院 | 欧美性动态图-欧美性精品人妖-欧美性久久-欧美性狂猛AAAAAA-欧美性狂猛bbbbbbxxxx-欧美性类s0x |